Model Name: TECFDT215000002

Issue Date : 2018/07/18

() Preliminary Specifications (*) Final Specifications

Customer Signature	Date	FDT	Date
Approved By		Approval By	
		Shawn Huang	
Note			
		• 🔉	

Contents

1.	Genera	I Description	.6
1.1.	Displa	ay Characteristics	.6
1.2.	Optica	al Characteristics	.7
1.3.	Mech	anical Characteristics	11
	1.3.1.	Placement Suggestions	11
	1.3.2.	Mechanical Characteristics	. 11
	1.3.3.	Absolute Maximum Ratings	. 12
2.	Electric	al Specification	13
2.1.	Block	Diagram	13
2.2.	Interfa	ace Connection	14
	2.2.1.	Connector Type	14
	2.2.2.	Connector Pin Assignment	. 14
2.3.	Electr	ical Characteristics	
	2.3.1.	Absolute Maximum Rating	. 16
	2.3.2.	Recommended Operating Condition	. 16
2.4.	Signa	I Characteristics	17
	2.4.1.	LCD Pixel Format	. 17
	2.4.2.	LVDS Data Format	. 17
	2.4.3.	Color versus Input Data	. 19
	2.4.4.	LVDS Specification	. 19
	2.4.5.	Input Timing Specification	
	2.4.6.	Input Timing Diagram	. 23
2.5.	Powe	r ON/OFF Sequence	24
3.	Backlig	ht Unit	25
3.1.		Diagram	
3.1.1		LIGHT PIN ASSIGNMENT	
3.2.		ical Characteristics	
3.2.	1 Reco	mmended Operating Conditi	25
4.	Reliabil	ity Test Items	26
5.	Internat	ional Standard	27
5.2.	-	/	
5.3.	EMC.	······	27
6.	Packing]	29

7.	Precautions	31
7.2.	Mounting Precautions	31
7.3.	Operating Precautions	31
7.4.	. Operating Condition for Public Information Display	32
7.5.	Electrostatic Discharge Control	
7.6.	Precautions for Strong Light Exposure	33
7.7.	Storage	33
7.8.	. Handling Precautions for Protection Film	33

Record of Revision

Version	Date	Page	Description
1.0	2018/07/18		First release

1. General Description

This specification applies to the 21.5 inch wide Color a-Si TFT-LCD ModuleTECFDT215000002. The display support the Full HD - 1920(H) x 1080(V) screen format and 16.7M colors (8 bits RGB data input). The input interface is Dual channel LVDS and this module doesn't contain a driver board for backlights. High Tni (110°C) liquid crystal is also applied on this model to enhance the sunlight readability.

* General Information

1.1. Display Characteristics

The following items are characteristics summary on the table under 25 $^\circ\!\mathrm{C}$ condition:

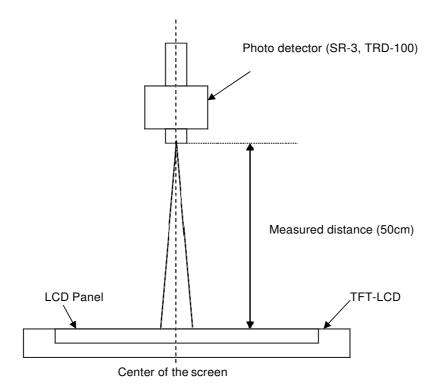
ITEMS	Unit	SPECIFICATIONS	Note	
Screen Diagonal	[mm]	546.86 (21.5")		
Active Area	[mm]	476.064 (H) x 267.786 (V)		
Pixels H x V	-	1920(x3) x 1080		
Pixel Pitch	[um]	247.95 (per one triad) ×247.95	Note1	
Pixel Arrangement	-	R.G.B. Vertical Stripe		
Display Mode	-	AHVA, normally Black		
White Luminance (Center)	[cd/m2]	2000 (Тур.)		
Contrast Ratio	-	1000 (Тур.)		
Response Time	[msec]	25 (Typ., G/G)		
Power Consumption	[Watt]	47.28 (Max.)		
(LCD Module+Backlight unit)		LCD module: PDD (Max.)=2.75@White pattern,Fv=60Hz		
		Backlight unit: P _{BLU} (Max.) =44.53		
Weight	[Grams]	2.2 Kg		
Outline Dimension	[mm]	501.1(H) × 292.2(V) ×16.12 (D) Typ		
Electrical Interface	-	Dual channel LVDS , 8-bit RGB data input		
Support Color	-	16.7M colors		
Surface Treatment	-	Anti-Glare, 3H	Haze=25%	
Rotate Function		Unachievable Note		
Display Orientation		Portrait/Landscape Enabled	Note 3	

Note1: If this model will be used for touch application, please refer to the following parameters in order to avoid the light interference. (ex. Moire)

- A. Pixel pitch: 247.95um.
- B. Prism film pitch: 50um.
- C. Prism film angle: 0 and 90 degree.

Note 2: Rotate Function refers to LCD display could be able to rotate. This function does not work in this model. **Note 3:** Please refer to 1.3.1 Placement Suggestions.

1.2. Optical Characteristics

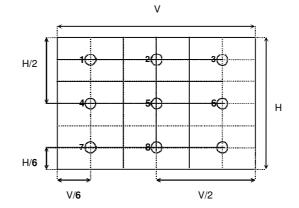

The optical characteristics are measured on the following test condition.

Test Condition:

- 1. Equipment setup: Please refer to Note 1-1.
- 2. Panel Lighting time: 30 minutes
- 3. VDD=5.0V, Fv=60Hz,Is=71mA,Ta=25 $^\circ\!\mathrm{C}$

Symbol	Description		Min.	Тур.	Max.	Unit	Remark
Lw	White Luminance (Center	of screen)	1800	2000	-	[cd/m2]	Note 1-1
							By SR-3
Luni	Luminance Uniformity (9 points)	75	80	-	[%]	Note 1-2
							By SR-3
CR	Contrast Ratio (Center o	f screen)	600	1000	-	-	Note 1-3
							By SR-3
θR	Horizontal Viewing Angle	Right	75	89	-		
θL	(CR=10)	Left	75	89	-	fala anna a l	Note 1-4
ФН	Vertical Viewing Angle	Up	75	89	-	[degree]	By SR-3
ΦL	(CR=10)	Down	75	89	-		
θR	Horizontal Viewing Angle	Right	75	89	-		
θL	(CR=5)	Left	75	89	-		
ФН	Vertical Viewing Angle	Up	75	89	-		
ΦL	(CR=5)	Down	75	89	-		
Т _{бтб}	Response Time	Gray to Gray	-	25	_	[msec]	Note 1-5
IGIG				0			By TRD-100
Rx		Red x	0.615	0.645	0.675		
Ry	Color Coordinates	Red y	0.308	0.338	0.368		
Gx	(CIE 1931)	Green x	0.290	0.320	0.350	-	By SR-3
Gy		Green y	0.590	0.620	0.650		
Bx		Blue x	0.120	0.150	0.180		
Ву		Blue y	0.025	0.055	0.085		
Wx		White x	0.283	0.313	0.343		
Wy	White y		0.299	0.329	0.359		
	NTSC Area Ratio			72		[%]	By SR-3
СТ	Crosstalk		-	-	1.5	[%]	Note 1-6
							By SR-3

Note 1-1: Equipment setup :



Note 1-2: Luminance Uniformity Measurement

Definition:

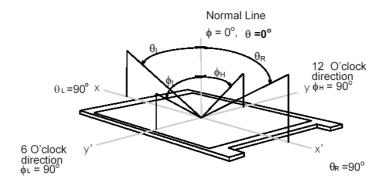
$$Luminance Uniformity = \frac{Minimum Luminance of 9 Points (P1 ~ P9)}{Maximum Luminance of 9 Points (P1 ~ P9)}$$

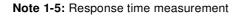
a. Test pattern: White Pattern

Note 1-3: Contrast Ratio Measurement

Definition:

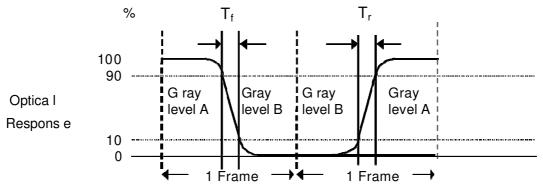
Contrast Ratio = Luminance of White pattern Luminance of Black pattern


a. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta = \Phi = 0^{\circ}$)


Note 1-4: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5 .

a. Horizontal view angle: Divide to left & right ($\theta L \& \theta R$)


Vertical view angle: Divide to up & down ($\Phi H \& \Phi L$)

The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, T_F), and from "Gray level B" to "Gray level A" (rising time, T_R), respectively. The response time is interval between the 10% and 90% of optical response.

The gray to gray response time is defined as the following table.

Gray Level to Gray Level		Target gray level					
Gray Level to G	Gray Lever to Gray Lever		L63	L127	L191	L255	
	LO						
	L63						
Start gray level	L127						
	L191						
	L255						

 \blacksquare T_{GTG_typ} is the total average time at rising time and falling time of gray to gray.

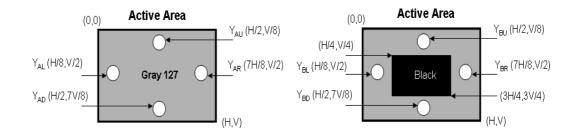
Note 1-6: Crosstalk measurement

Definition:

CT = Max. (CTH,CTV);

Where

a. Maximum Horizontal Crosstalk :


CTH = Max. (| YBL - YAL | / YAL × 100 %, | YBR - YAR | / YAR × 100 %);

Maximum Vertical Crosstalk:

CTV = Max. (| YBU - YAU | / YAU × 100 %, | YBD - YAD | / YAD × 100 %);

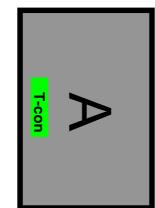
b. YAU, YAD, YAL, YAR = Luminance of measured location without Black pattern

YBU, YBD, YBL, YBR = Luminance of measured location with Black pattern

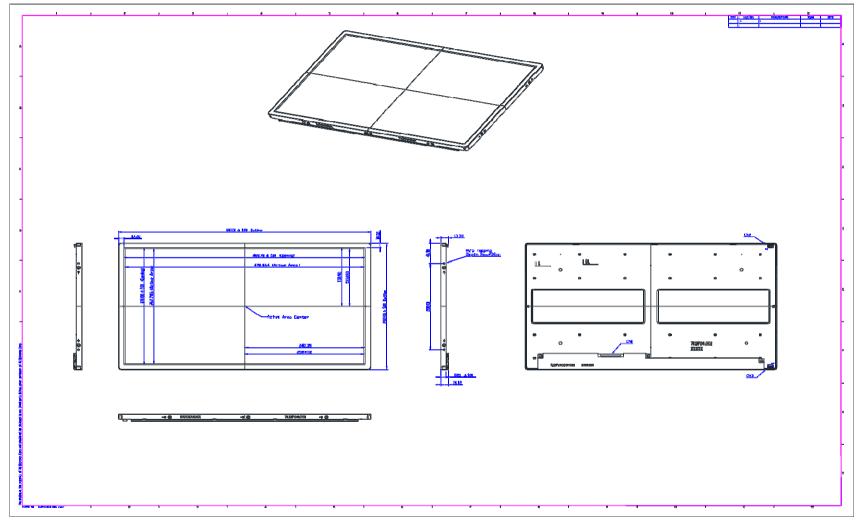
1.3. Mechanical Characteristics

The contents provide general mechanical characteristics for the model TECFDT215000002 In addition the figures in the next page are detailed mechanical drawing of the LCD.

li	Item		Unit	Note
	Horizontal	501.1	mm	
Outline Dimension	Vertical	292.2	mm	
	Depth (typ)	16.12	mm	
Weight	220	00	G	


1.3.1. Placement Suggestions

- 1. Landscape Mode: The default placement is T-Con Side on the lower side and the image is shown upright via viewing from the front.
- 2. Portrait Mode: The default placement is that T-Con side has to be placed on the left side via viewing from the front.

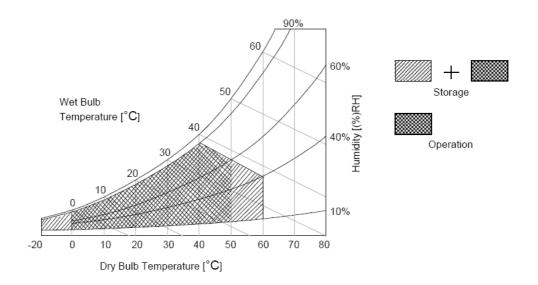

Landscape (Front view)

Portrait (Front view)

1.3.2. Mechanical Characteristics

Page 11 / 33

1.3.3. Absolute Maximum Ratings

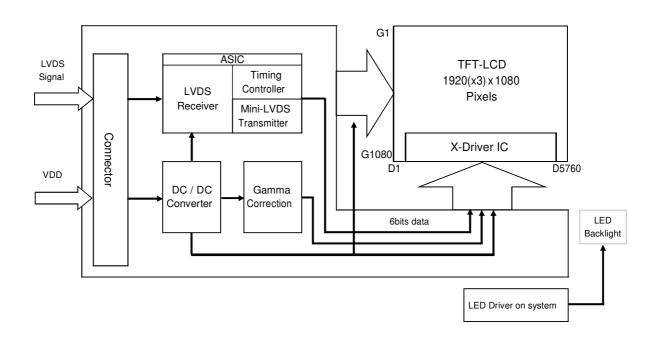

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit Permanent damage may occur if exceeding the following maximum rating.

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	ТОР	0	+50	[°C]	Note 1-7
Operating Humidity	HOP	10	90	[%RH]	Note 1-7
Storage Temperature	TST	-20	+60	[°C]	Note 1-7
Storage Humidity	HST	10	90	[%RH]	Note 1-7
Panel Surface Temperature	PST		65	[°C]	Note 1-8

Note 1-7: Maximum Wet-Bulb should be $39^\circ\!\mathrm{C}$ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of $40\Box$ or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 1-8: Surface temperature is measured at 50 $^\circ\!\mathbb{C}$ dry condition.

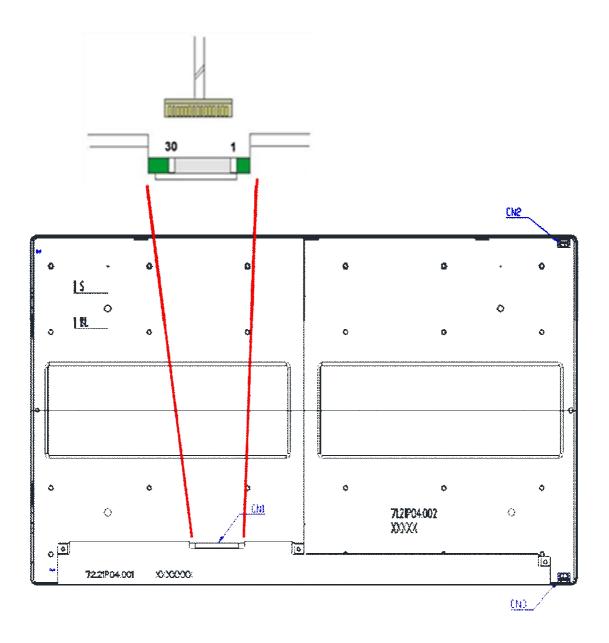


2. Electrical Specification

The TECFDT215000002 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

2.1. Block Diagram

The following shows the block diagram of the 21.5 inch Color TFT-LCD Module.


2.2. Interface Connection

2.2.1. Connector Type

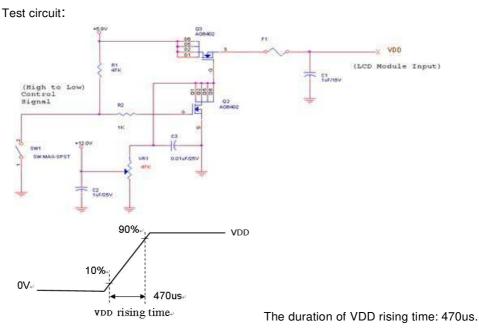
TFT-LCD	Manufacturer	P-TWO	STM
Connector(CN1)	Part Number	187034-3009	MSBKT2407P30HB
Mating Consector	Manufacturer	JAE	
Mating Connector	Part Number	FI-X30HL (Locked Type)	

2.2.2. Connector Pin Assignment

PIN #	Symbol	Description	Remark
1	RxO0-	Negative LVDS differential data input (Odd data)	
2	RxO0+	Positive LVDS differential data input (Odd data)	
3	RxO1-	Negative LVDS differential data input (Odd data)	
4	RxO1+	Positive LVDS differential data input (Odd data)	
5	RxO2-	Negative LVDS differential data input (Odd data)	
6	RxO2+	Positive LVDS differential data input (Odd data)	
7	GND	Ground	
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)	
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)	
10	RxO3-	Negative LVDS differential data input (Odd data)	
11	RxO3+	Positive LVDS differential data input (Odd data)	
12	RxE0-	Negative LVDS differential data input (Even data)	
13	RxE0+	Positive LVDS differential data input (Even data)	
14	GND	Ground	
15	RxE1-	Negative LVDS differential data input (Even data)	
16	RxE1+	Positive LVDS differential data input (Even data)	
17	GND	Ground	
18	RxE2-	Negative LVDS differential data input (Even data)	
19	RxE2+	Positive LVDS differential data input (Even data)	
20	RxECLK-	Negative LVDS differential clock input (Even clock)	
21	RxECLK+	Positive LVDS differential clock input (Even clock)	
22	RxE3-	Negative LVDS differential data input (Even data)	
23	RxE3+	Positive LVDS differential data input (Even data)	
24	GND	Ground	
25	NC	No connection (for AUO test only. Do not connect)	
26	NC	No connection (for AUO test only. Do not connect)	
27	NC	No connection (for AUO test only. Do not connect)	
28	VDD	Power Supply Input Voltage	
29	VDD	Power Supply Input Voltage	
30	VDD	Power Supply Input Voltage	

2.3. Electrical Characteristics

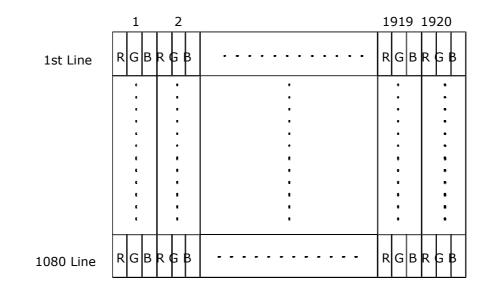
2.3.1. Absolute Maximum Rating

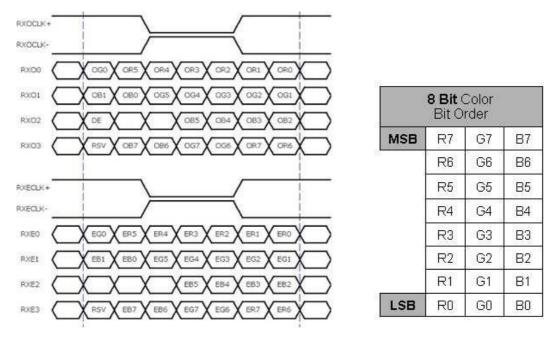

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	6.0	[Volt]	Ta=25□

2.3.2. Recommended Operating Condition

Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	4.5	5.0	5.5	[Volt]	
IDD	Power supply	-	0.46	0.55	[A]	VDD= 5.0V, All white Pattern, Fv=60Hz
100	Input Current (RMS)		0.50	0.60	[A]	VDD= 5.0V, All white Pattern, Fv=75Hz
PDD	VDD PowerVDD	-	2.30	2.75	[Watt]	VDD= 5.0V, All white Pattern, Fv=60Hz
FDD	Power Consumption		2.50	3.00	[Watt]	VDD= 5.0V, All white Pattern, Fv=75Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 2-1
VDDrp	Allowable VDD Ripple Voltage	-	-	500	[mV]	VDD= 5.0V, All white Pattern, Fv=75Hz
LTLED	LED Life Time	50,000			[Hours]	Note 2-2


Note 2-1: Inrush Current measurement:


Note 2-2: Definition of life time:

- a. Brightness of LED becomes to 50% of its original value
- b. Test condition: Is = 71mA and 25 $^\circ\!\mathrm{C}$ (Room Temperature)

2.4. <u>Signal Characteristics</u> 2.4.1. <u>LCD PixelFormat</u>

2.4.2. LVDS Data Format

Note 2-3:

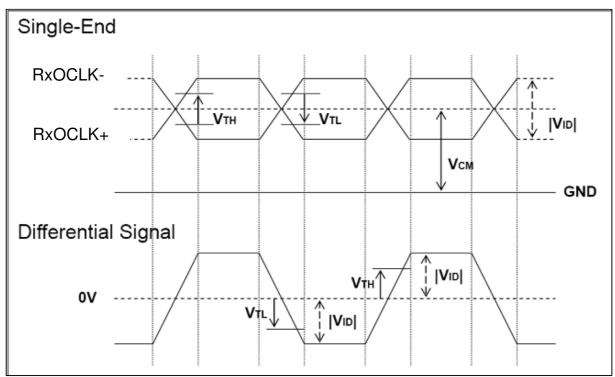
a. O = "Odd Pixel Data" E = "Even Pixel Data"

b. Refer to 3.4.1 LCD pixel format, the 1st data is 1 (Odd Pixel Data), the 2nd data is 2 (Even Pixel Data) and the last data is 1920 (Even Pixel Data).

2.4.3. Color versus Input Data

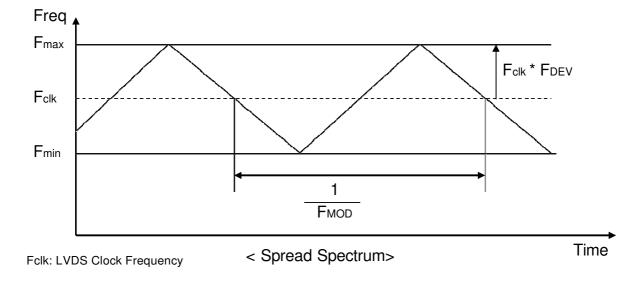
The following table is for color versus input data (8bit). The higher the gray level, the brighter the color.

Color		Color Input Data																								
	Gray Level					data , <mark>LSE</mark>						-		N dat , LSE)				-		E dat: , <mark>LSE</mark>)		Remark
		R7	R6	R5	R4	R3	R2	R1	RO	G7	G6	G5	G4	G3	G2	G1	GO	B7	B6	B5	B4	B3	B2	B1	BO	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	O	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray 127	-	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:			1		:	:	:	:	:	:	:	:	:	•••	:	:	:		:	:	:	:	:	:	
	L255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	ம	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	


2.4.4. LVDS Specification

a. DC Characteristics:

Symbol	Description	Min	Тур	Max	Units	Condition		
VTH	LVDS Differential Input	-	-	+100	[mV]	VCM = 1.2V		
	High Threshold							
VTL	LVDS Differential Input	-100	-	_	[mV]	VCM = 1.2V		
VIL	Low Threshold	-100		-	[III V]	$\mathbf{V} \mathbf{O} \mathbf{V} \mathbf{V} = 1 \cdot \mathbf{Z} \mathbf{V}$		
VID	LVDS Differential Input	100		600	[m]/]			
	Voltage	100	-	000	[mV]			
VOM	LVDS Common Mode	.10	.10	. 1 5	۲ <i>\</i> / ۱			
VCM	Voltage	+1.0	+1.2	+1.5	[V]	VTH-VTL = 200mV		


LVDS Signal Waveform:

Use RxOCLK- & RxOCLK+ as example.

b. AC Characteristics:

Symbol	Description	Min	Max	Unit	Remark
FDEV	Maximum deviation of input clock frequency during Spread Spectrum	-	± 3	%	
FMOD	Maximum modulation frequency of input clock during Spread Spectrum	-	200	KHz	

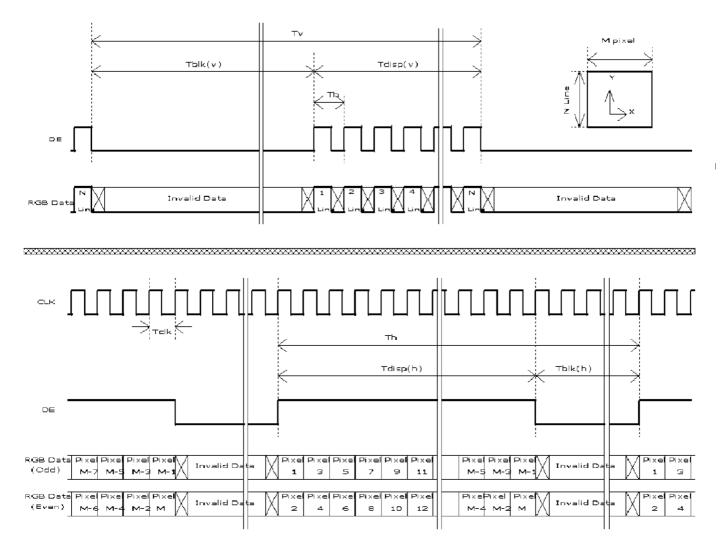
2.4.5. Input Timing Specification

Symbol	Description			Тур.	Max.	Unit	Remark
Tv		Period	1094	1130	1836	Th	
Tdisp (v)	Vertical Continu	Active	1080	1080	1080	Th	
Tblk (v)	Vertical Section	Blanking	14	50	756	Th	
Fv		Frequency	49	60	76	Hz	
Th		Period	1000	1050	1678	Tclk	
Tdisp (h)	Llevizentel Costion	Active	960	960	960	Tclk	
Tblk (h)	Horizontal Section	Blanking	40	90	718	Tclk	
Fh		Frequency	53.7	67.8	90.0	KHz	Note 2-4
Tclk	LVDS Clock	Period	11.2	14.0	18.6	ns	1/Fclk
Fclk		Frequency	53.7	71.2	90.0	MHz	Note 2-5

It only support DE mode, and the input timing are shown as the following table.

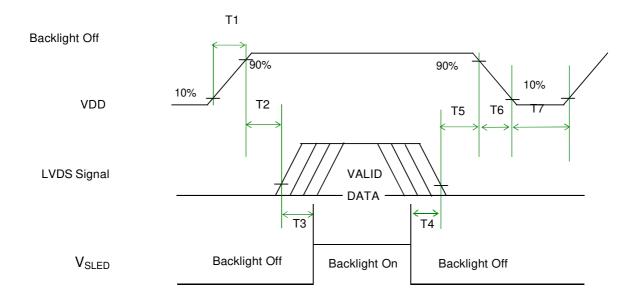
Note 2-4: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.); Fh (Typ.) = Fclk (Typ.) / Th (Typ.); Fh (Max.)= Fclk (Max.) / Th (Min.);


Note 2-5: The equation is listed as following. Please don't exceed the above recommended value.

Fclk (Min.) = Fv (Min.) x Th (Min.) x Tv (Min.);

Fclk (Typ.) = Fv (Typ.) x Th (Typ.) x Tv (Typ.);


Fclk (Max.) = Fv (Max.) x Th (Typ.) x Tv (Typ.);

2.4.6. Input Timing Diagram

2.5. Power ON/OFF Sequence

VDD power,LVDS signal and backlight on/off sequence are as following. LVDS signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Symbol		Value		Unit	Remark
Symbol	Min. Typ.		Max.	Unit	
T1	0.5	-	10	[ms]	
T2	0	-	50	[ms]	
Т3	500	-	-	[ms]	
T4	100	-	-	[ms]	
Т5	0		50	[ms]	Note 2-6
15	0		50	linsi	Note 2-7
Тб	0		200	[mc]	Note 2-7
10	0	-	200	[ms]	Note 2-8
Τ7	1000	-	-	[ms]	

Note 2-6 : Recommend setting T5 = 0ms to avoid electronic noise when VDD is off.

Note 2-7 : During T5 and T6 period , please keep the level of input LVDS signals with Hi-Z state.

Note 2-8 : Voltage of VDD must decay smoothly after power-off. (customer system decide this value)

3. Backlight Unit

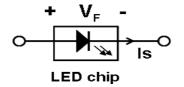
3.1. Block Diagram

The following shows the block diagram of the 21.5 inch Backlight Unit. And it's included 2pcs of LED light bar in Backlight Unit. Each of LED light bar is included 49 pcs of LED package.(7 strings with 7 pcs LED of each string).

3.1.1. BACKLIGHT PIN ASSIGNMENT

PIN #	Symbol	DESCRIPTION			
1	VLED	High Voltage			
2	GND	Low Voltage			

3.2. Electrical Characteristics


3.2.1. Recommended Operating Condition

(Ta=25℃) Min. Symbol Description Max. Unit Remark Тур. 100% duty ratio of LED LED String Current ls 71 [mA] _ chip, Note 3-4 Is=71mA @ 100% duty Vs LED String Voltage 44.8 [Volt] _ ratio; *Note 3-1* LED Light Bar Power 44.53 $\mathsf{P}_{\mathsf{BLU}}$ [Watt] Note 3-2 -_ Consumption $\mathsf{LT}_{\mathsf{LED}}$ Note 3-3 LED Life Time 50,000 --[Hour]

Note 3-1: Vs (Typ.) = V_F (Typ.) X LED No. (one string);

a. V_F: LED chip forward voltage, V_F(Max.)=6.4V

b. The same euqation to calculate Vs(Min.) & Vs (Max.) for respective V_F (Min.) & V_F(Max.);

Note 3-2: P_{BLU} (Max.) = Vs (Max.) X Is (Max.) X 14 ; (14 is total String No. of LED Light bar)

Note 3-3: Definition of life time:

a. Brightness of LED becomes to 50% of its original value

b. Test condition: Is = 47mA and 25° C (Room Temperature)

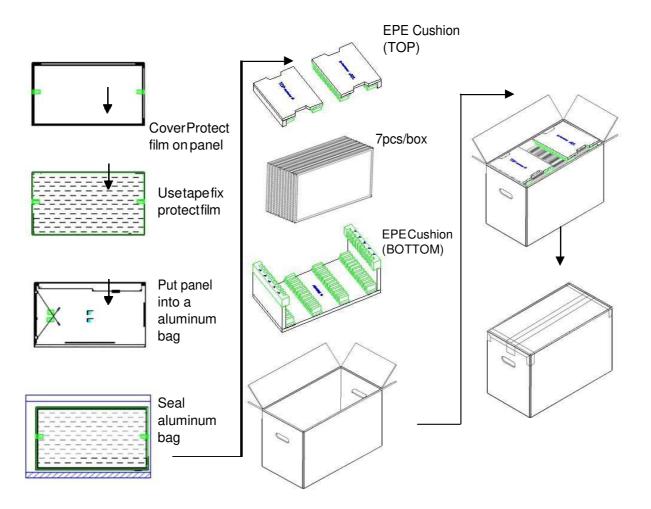
Note 3-4: Strongly recommend "Analog Dimming" method for backlight brightness control for Wavy Noise Free. Otherwise, recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.

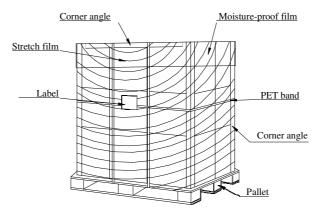
4. Reliability Test Items

Reliability test items are listed as following table. (Bare Panel only)

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60℃, 500hrs
2	Low temperature storage test	3	-20℃, 500hrs
3	High temperature operation test	3	50°C, 500hrs
4	Low temperature operation test	3	-5℃, 500hrs
5	Vibration test (With carton)	1CTN/7PCS	Acceleration: 1.04 Grms Wave: Random. Frequency: 2 - 200 Hz Sweep: 20 Minutes each Axis (X, Y, Z)
6	Drop test (With carton)	1CTN/7PCS	Height: 61cm Direction: 1 Corner-3 Edge-6 Faces (ASTMD4169-I)
7	Vibration test (non-operation)	3	Wave form: random Vibration level : 1.0G RMS Bandwidth : 3-300Hz Duration : X axis, Vertical, 30min Y axis, Vertical, 30min Z axis, Vertical, 30min one time each direction
8	Shock test (non-operation)	3	Shock level 50G ,20ms ±X,Y,Z axis Waveform: half sine wave Direction: One time eachdirection

5. International Standard


5.1. Safety


- UL 60950-1; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1; Standard for Safety of International Electrotechnical Commission
- (3) EN 60950-1; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

5.2. <u>EMC</u>

- ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

6. Packing

Pallet and Shipment Information

	Item		Specification		Remark
	ltem	Q'ty	Dimension	Weight(kg)	nemark
1	Panel	1	501.1mm(H) × 292.2mm(V) ×16.3(D)mm	2.1	Note 1
2	Cushion	1	-	0.55	
3	Box	1	564(L)mm x 300(W)mm x 393(H)mm	1.40	without Panel & cushion <i>Note 1</i>
4	Packing Box	7 pcs/Box	564 (L)mm x 300 (W)mm x 393 (H)mm	16.57	with panel & cushion Note 1
5	Pallet	1	1150(L)mm x 910(W)mm x 132(H)mm	13.8	Note 1
6	Pallet after Packing	18 boxes/pallet	1150(L)mm x 910(W)mm x 1311(H)mm	321.1	Note 1

Note 1: Estimated value which is subject to change based on real measured data.

7. Precautions

Please pay attention to the followings when you use this TFT LCD module.

7.1. Mounting Precautions

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

7.2. Operating Precautions

- The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it may become lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic

Page 31 / 33

interference shall be done by system manufacturers. Grounding and shielding methods may

be important to minimize the interface.

(7) The conductive material and signal cables are kept away from LED driver inductor to prevent abnormal display, sound noise and temperature rising.

7.3. Operating Condition for Public Information Display

The device listed in the product specification is designed and manufactured for PID (Public Information Display) application. To optimize module's lifetime and function, below operating usages are required.

- (1) Normal operating condition
 - A. Operating temperature: $0 \sim 50^{\circ}$ C
 - B. Operating humidity: 10~90%
 - C. Display pattern: dynamic pattern (Real display).

Note) Long-term static display would cause image sticking.

- (2) Operation usage to protect against image sticking due to long-term static display.
 - A. Suitable operating time: under 16 hours a day.
 - B. Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image.
 - C. Periodically change background and character (image) color.
 - D. Avoid combination of background and character with large different luminance.
- (3) Periodically adopt one of the following actions after long time display.
 - A. Running the screen saver (motion picture or black pattern)
 - B. Power off the system for a while
- (4) LCD system is required to place in well-ventilated environment. Adapting active cooling system is highly recommended.
- (5) Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions, such as high temperature/ humidity, display stationary patterns, or long operation time etc..., it is strongly recommended to contact FDT for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

7.4. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

7.5. Precautions for Strong Light Exposure

- 1. Strong light exposure causes degradation of polarizer and color filter.
- 2. To keep display function well as a digital signage application, especially the component of TFT is very sensitive to sunlight, it is necessary to set up blocking device protecting panel from radiation of ambient environment.

7.6. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

7.7. Handling Precautions for Protection Film

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ionblown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.